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ABSTRACT
Advances in multi-touch enabled interactive tabletops led to
many commercially available products and were increasingly
deployed at places beyond research labs, for example at exhi-
bitions, retail stores, or showrooms. At the same time, small
multi-touch devices, such as tablets or smartphones, became
prevalent in our daily life. When considering both trends,
occasions and scenarios where tabletop systems and mobile
devices form a coupled interaction space are expected to be-
come increasingly widespread.

However, application development or research prototypes for
those environments will foreseeable require considerable re-
sources when considering nowadays heterogeneity of device
platforms and the functionality to establish a connected in-
teraction space. To address these concerns, this paper dis-
cusses challenges and answers questions that arose during de-
sign and implementation of the Environs framework, a multi-
display environment software framework that eases devel-
opment of interactive distributed applications. In particular,
Environs enables applications utilizing video portals that put
high requirements on responsiveness and latency.
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INTRODUCTION
The last decade has shaped the landscape of mobile touch-
screen devices tremendously by generating a variety of device
classes such as small smartwatches, smartphones, paper sheet
sized tablets, or touch enabled notebooks. Even intermedi-
ate form factors, such as notepad sized ”phablets” or hybrid
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devices with detachable keyboards (e.g. Microsoft Surface,
Asus Transformer Pad) emerged and the variety of device
classes is expected to develop further since the technology has
matured out of its infancy and variations can be manufactured
easily. Along with larger screen sizes, the equipment of those
devices, such as CPU, GPU, connectivity features, or sen-
sors, has been improved constantly making them nowadays
well suited for demanding applications. Due to this trend and
along with drop in cost and high availability, those devices
meanwhile became prevalent in daily life. Hence, people got
used to absolute input devices [11] in addition to the relative
input of traditional mice, which also alleviates comprehen-
sion for interactive tabletop interaction.

At the same time, proliferation of large immobile touchscreen
devices, such as interactive tabletops, has risen at smaller
paces but yet constantly. More and more interactive table-
tops became commercially available (e.g. Microsoft Sur-
face tabletops1, SmartTech SMART Table2, ideum Touch Ta-
bles3) and increasingly deposited at public places beyond
research labs, for example museums, showrooms, customer
service places, or airports. Considering both trends, en-
vironments composed of multiple mobile displays working
together with interactive tabletops are expected to become
increasingly commonplace, also at home. Such environ-
ments, called MDEs (Multi-Display Environments), promise
for novel applications, usage scenarios and interaction tech-
niques spanned across multiple displays [22, 23]. A quite
challenging example for an MDE application is to establish
wireless video portals between devices which is the primary
application domain of this work, see Figure 1. Portals repli-
cate part of a large workspace to the smaller workspace on
a mobile device at hand, for instance to enable a world-in-
miniature view [7], to create a virtual loupe [26], to enable
collaborative visual exploration [17], or, more general, as an
extension in collaborative interactive spaces [1, 8, 13]. These
recent research efforts indicate a growing interest of the HCI
community in real-time video portals for interactive spaces or
appropriate interaction techniques, which essentially require
applicable and scalable MDE and portal realizations for to-
days mobile devices.

1http://www.pixelsense.com (Apr. ’14)
2http://smarttech.com/ (Apr. ’14)
3http://ideum.com/products/multitouch/ (Apr. ’14)



Figure 1. Interactive Real-Time Portals.

On the other hand, with a foreseeable heterogeneous device
environment comprised of different kinds of mobile device
and tabletop platforms, it is also a hassle to establish the func-
tionality and infrastructure required to couple devices, iden-
tify devices and users, perform and synchronize distributed
application logic, and establish interactive portals. This is not
only an issue for research prototypes, but also for engineering
of commercial interactive applications for MDEs. Instead of
developing all the aforementioned functionality from scratch
for each application, those best fit into a framework that can
be used for application development. Such a framework help
reduce development effort and time and optimize the process
of engineering interactive application prototypes for research
studies or products for consumer market.

To address these issues, we have implemented a software
framework called Environs aimed at alleviating the develop-
ment of MDE applications. The framework supports nowa-
days heterogeneous device environments and particularly ad-
dresses low latency and high resolution video portals for in-
teractive applications. It consists of self-contained platform
specific libraries that manage available application counter-
parts within the MDE, dynamically couple each other, estab-
lish video portals, and enable user interaction and applica-
tions spanned across multiple displays.

This paper gives an overview over the Environs framework
and answers questions that we encountered in designing and
implementing the framework, for example how to design the
architecture/infrastructure, what components are required,
how to couple application counterparts and establish com-
munication, or how to distribute responsibilities over com-
ponents. We also present two example applications that em-
ploy our framework to enable research for interactive video
portal applications within MDEs. Even though parts of Envi-
rons provide service concepts typical of middlewares, we use
the term framework for Environs because of the more general
meaning of frameworks.

RELATED WORK
The research literature related to MDEs provides studies
for interaction techniques [5, 13, 19, 22, 28], interaction

metaphors and gestures [23, 24, 27], or example applications
[7, 17, 26]. However, no work has yet considered the re-
quirements and challenges on appropriate application frame-
works. In particular, interactive video portal applications for
MDEs have a strong demand on low latency for the presenta-
tion. Therefore, we discuss related work in terms of interac-
tive portals in conjunction with latency issues in the light of
touch interaction.

Interactive Portals
A large body of research for interactive portals draws on user
interface and interaction metaphors, for example a toolglass
[6], a peephole [9, 10, 29], or a magic lens [6, 10, 21]. They
applied mobile augmented reality techniques to enable a por-
tal, where the device’s back facing camera was used to cap-
ture the portal source in order to augment the captured portal
and ultimately to display the result on the device’s display [9,
10, 21]. While this approach works well for the underlying
metaphor, it also pose limitations of the application area. For
example, navigation or zoom interaction is intrinsically tied
to the mobile device’s physical position and orientation.

Alternative portal approaches include having the whole por-
tal content preloaded on the mobile device as proposed by
Yee et al. [29] or restricting the portal content to geometrical
drawings as demonstrated by Holmquist et al. [12]. Only few
realized a portal for mobile devices that overcome the former
described limitations [7, 13, 25, 26], however, they still suffer
from restricted applicability for mobile devices. For example,
Tsao [25] or Baudisch [3] facilitated portals based on VNC4,
which was originally designed to transmit screen captures on
an event triggered request mechanism. Thus, VNC is not par-
ticularly designated for real-time streaming a portal in video
quality.

Latency
Besides visual quality and applicability of portal implemen-
tations, latency is an equally important quality. In this work,
we define latency as the duration for changes on the portal
source to be visible on the portal destination. While prior
works neglected latency issues, the impact of latency on user
interaction and user experience increasingly became the fo-
cus of attention of recent research efforts [2, 4, 14, 15, 20],
emphasizing the negative effects of high latency on task per-
formance and error rates.

Since early work in 1968 by Miller [18], the ”100ms rule of
thumb” has been widely asserted for an upper recommenda-
tion for GUI feedback to seem instantaneous, whereas the
evolution of technology educed increasing performance gains
of mobile processors and new forms of devices, applications,
and corresponding interaction techniques. Consequently, re-
searchers focused again on system latency, for example, Jota
et al. [14] studied the effect of latency in direct-touch point-
ing tasks and showed how task performance significantly de-
crease and error rates increase as latency increase. Thus, re-
inforcing an earlier Fitt’s law study of MacKenzie [16] who
identified latency as a major bottleneck for usability. Ng and
colleagues [20] proposed to explicitly consider latency in user
4http://www.realvnc.com (Apr. ’14)



interface design to cope with system latency. In addition, la-
tency also has an effect on user experience where users per-
ceive lower latency as more responsive [2]. Overall, portal
implementations suffering from high latency in visualization
and interaction not only has a negative effect on task perfor-
mance, but also becomes annoying for users which in turn
declines user experience [2].

CONTRIBUTION
The contribution of this paper for the research community is
twofold. Firstly, we address questions regarding design, ar-
chitecture, and implementation, that arise when engineering
frameworks for MDEs supporting high resolution and low la-
tency video portals. Secondly, we describe the software archi-
tecture and implementation details of our approach to enable
interactive applications for MDEs. This work seeks to help
advance research for interactive portal applications in MDEs
that also account for user experience in which user expecta-
tions on applications rise with increase of mobile device per-
formance.

EXAMPLE APPLICATIONS
Before describing concepts and technical details of Environs,
this section aims at giving the reader an impression of the
framework’s functionality by depicting example applications
and scenarios. Thus far, we have realized two example ap-
plications employing the Environs framework to prove the
usefulness of the framework’s capabilities and its advantages
in terms of easy integration as well as reduced development
cost. Those applications also served to conduct research for
appropriate interaction techniques in MDEs through interac-
tive portals.

MediaBrowser
The MediaBrowser is a distributed application consisting of
an application for tabletop surfaces and mobile devices. The
applications are designed for collaborative reviewing or ex-
amining of media data on large tabletop displays. They aimed
at studying interaction techniques that best support collabora-
tive tasks within such an interactive MDE scenario.

Users who run the MediaBrowser on their mobile device are
first presented a list of available MediaBrowser devices and
tabletops that were detected by the framework. The frame-
work updates this list automatically allowing users to partic-
ipate in an ad-hoc fashion. Upon being presented with the
list of application counterparts, users may transmit different
kinds of media data, such as images or text-documents, with
each other through the MediaBrowser. Media data transmit-
ted to the tabletop are immediately shown on the tabletop
display where all media objects can be manipulated through
multi-touch input.

In Figure 2, the MediaBrowser shows multiple images which
can be moved or scaled with multi-touch gestures. Bystanders
who want to take part in the collaborative task just place their
device on the tabletop surface whereupon a video portal be-
tween the devices is automatically created. As depicted in
Figure 1 and 2, the mobile devices appear as transparent win-
dows that show the tabletop surface area occluded by the de-
vice. In order to detect mobile devices on the tabletop surface,

Figure 2. Example application: Media Browser.

every mobile device has a Microsoft Surface supported visual
byte tag5 attached at the backside, see Figure 3. The portal

Figure 3. Microsoft Surface byte tag attached at the back side of a mo-
bile device.

stays connected and updated if a device is lift off from the
tabletop surface allowing users to virtually pick up a piece of
the tabletop surface by means of their personal device. Users
can further input multi-touch gestures on their mobile device
which are directly applied to the media on the tabletop sur-
face. By this way, multiple users collaboratively interact with
the tabletop surface in parallel while the presentation of the
large tabletop surface does not suffer from space conflicts or
occlusion issues due to too many arms and hands of collabo-
rators. However, users are still able to interact on the tabletop
surface if the collaborative task requires for. Development
of the application hugely benefited from the Environs frame-
work’s functionality allowing developers to focus mainly on
user interface and presentation related logic.

Public Display Toucher
The second example application Public Display Toucher, as
shown in Figure 4, consists of an application for public dis-
plays and mobile tablets. This application demonstrates how
users may operate large public displays by means of a tablet’s
input capabilities. Users connect to a public display through
an according tablet application which enables them to transfer
media data to the public display’s desktop or operate through
a video portal. Upon creation of a video portal, the portal’s
5http://www.microsoft.com/download/en/details.aspx?id=11029
(Apr. ’14)



Figure 4. Example application: Public Display Toucher.

position and size can be adjusted through performing three
finger multi-touch gestures. The public display can be con-
trolled by means of single touches on the tablet which are
translated to mouse clicks on the public display’s user in-
terface. Furthermore, key input on the tablet’s virtual key-
board are put through to the public display and translated into
regular key events. By this means, the tablet takes over the
public display’s mouse and keyboard allowing users to oper-
ate the public display’s desktop, for instance to start appli-
cations, perform mouse clicks, or enter text. Based on this
basic functionality, multi-touch enabled applications may be
started on the public display which may be controlled further
with the tablet. Just as with the MediaBrowser, development
of the application mainly focused on user interface related
logic. In addition, the application for the public display in-
cluded logic for translating key messages from tablet devices
into Microsoft Windows key events.

CHALLENGES FOR MDE FRAMEWORKS
When engineering a framework for the MDEs in focus of this
paper, questions arise such as how to design a framework to
support different platforms without implementing, managing
and developing the whole framework for each platform sep-
arately, or how to structure and distribute responsibilities for
a reasonable architecture, or how to manage the participating
devices and applications in case of multiple different MDE
applications running in the same physical MDE?

We address such questions regarding architecture, design, and
implementation by first identifying essential requirements on
the MDE framework in question and then presenting our ap-
proach. The following requirements are also considered chal-
lenges to tackle within the engineering process:

1. Heterogeneity of platforms. From a technical point of view,
a big challenge for a framework is to support different
heterogeneous device platforms. For each platform, the
framework’s functionalities have to be implemented based
on platform specific development requirements. For ex-
ample, each platform requires developers to use a specific
programming language, such as Java for Google Android,
C# for Microsoft Surface, or Objective-C for Apple iOS.
Moreover, each platform provides access to the functional-
ity through different APIs, packages and methods.
Supporting different device platforms is not only reason-
able for commercial development, but also for scientific re-
search in case of distributing the framework or framework-
based applications to fellow researchers who may not nec-
essarily use the same device platforms.

2. Efficiency and latency. A framework must provide effi-
ciency and low latency for network transfers and for frame-
work logic. In particular, video portals require fast packet
transfers and fast processing of the video stream in order
to enable low latency. The lower the latency, the more re-
sponsive an application appears, which directly affects user
experience [2].

3. Flexible device management. Finding and managing avail-
able devices must support MDE scenarios, where devices
take part in an ad-hoc manner and may vanish suddenly.
Devices have to identify themselves to each other and ap-
prove or deny connection requests as well as handle con-
nections from multiple devices in parallel.

4. Sensor support. Nowadays devices are richly equipped
with sensors, such as touch sensor, accelerometer, com-
pass, or gyroscope. In order to offer novel interaction ex-
periences, such sensors are often integrated into interac-
tion with MDE applications. Therefore, a framework has
to provide the support and infrastructure to retrieve, trans-
port, process, or consume the sensor data.

DESIGN OF ENVIRONS
Environs is a software framework designed to aid develop-
ment of distributed applications for MDEs with support for
nowadays heterogeneous device platforms. Developers of
those applications are given a set of self-contained platform
specific libraries of which they include the library targeting
their device’s platform. In the current development state, En-
virons supports the platforms Microsoft Windows, Google
Android, and Apple iOS. All libraries provide a consistent
API across all platforms to custom applications for accessing
the functionality of the framework.

Environs’ functionality was designed to be implementation
agnostic to the application logic layer which means that appli-
cations don’t have to care about how to detect other devices or
transfer files to them. Applications only need to invoke calls
of the framework’s API which can succeed or fail. The frame-
work’s functionalities so far include device and environment
management, management of connections to other devices,
transfer of files or binary data, communication between appli-
cation instances by text or binary messages, real-time stream-
ing of touch contacts to other devices and conducting touch
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Figure 5. Environs libraries’ code distribution.

events on destination devices, real-time streaming of sensor
data to other devices, and real-time streaming of customiz-
able high resolution video portals.

Code Distribution
Each library is comprised of a native component written
in C/C++ and a platform specific component developed in
the particular platform language, that is either C#, Java or
Objective-C as outlined in Figure 5. Most part of the li-
braries, that is the aforementioned functionalities including
image processing and video encoding, or gesture recognizers,
share the same source code. This common code base is devel-
oped as portable C/C++-code and compiled as native compo-
nent in order to benefit from reduced development time. This
code distribution architecture addresses the challenge (1) and
allows for the majority of the framework to be developed on
the common code base for all platform specific libraries, for
instance adding new or extending functionalities, modifying
transport protocols, or debugging. In order to add support for
a new platform, a platform specific API layer has to be written
that connects the common code base with custom application
logic.

Overall, the common code base drastically minimizes the de-
velopment cost required for maintenance and development
whilst supporting heterogeneous device platforms. In addi-
tion, native code provides rich opportunities to realize high
performance implementations and low latency optimizations,
for example in terms of memory management, platform op-
timizations, or direct access to hardware components which
addresses the challenge (2). The platform specific compo-
nent of the libraries, that is the tiny slices above the com-
mon code base in Figure 5, primarily implements a consis-
tent framework API across platforms supporting quick and
easy integration into custom applications. Custom applica-
tion logic (located at the top level in Figure 5) simply add the
framework library and access MDE functionalities through
the framework API. This code layer distribution best suits the
needs of the engineering process for interactive applications
supporting heterogeneous MDEs.

Concept of Environs’ Environments
The Environs framework enables multiple logically separated
application environments to coexist within the same physi-
cal MDE as sketched in Figure 6. Each application environ-

Figure 6. Multiple application environments distinguished by
project/application names.

ment is identified by a project name and an application name
which allows scenarios where, for example, multiple different
Environs-enabled applications run on a tabletop display while
the framework guarantees that each application sees and in-
teracts only with other corresponding applications running
within the same MDE. This logical separation helps the ap-
plication logic of custom applications in communication with
other application instances because different applications po-
tentially communicate with disparate communication proto-
cols. For example, a tablet application that exchange videos
or images with a tabletop display does not need to connect
to a public display application in the same MDE that runs a
blackboard application.

Each application can request to see and communicate only
with applications either with matching project and application



Figure 7. Device IDs in application environments.

name, or with matching project name. The additional project
name enables hybrid applications that provide the function-
ality of multiple different applications together and therefore
needs to see application instances of all application names
within the same project. In order to identify devices within
an application environment, each device is assigned an ID
(numeric 32 bit value) as sketched in Figure 7. This ID must
only be unique within an application environment, that is the
same device may use a different ID for a different application
environment. The concrete assignment or partitioning of IDs
can be chosen application dependent. For example, IDs lower
than 1000 are assigned to tabletops and IDs greater than 1000
are assigned to mobile devices.

FRAMEWORK COMPONENTS
The Environs framework includes the following main com-
ponents: (1) API/core component; (2) device and application
management (mediator component); (3) network connectiv-
ity, communication and data transfer (network component);
(4) touch event/sensor data handling which also includes ges-
ture recognizer modules.

The API component (1) represents the linchpin for custom
applications to access the framework functionality. It re-
ceives API calls from custom applications, translates them
to commands, manages and delegates them to appropriate
framework components, and informs the caller about results
of its call, whereby results of longer lasting tasks are asyn-
chronously notified to the caller. Each component mutually
makes use of the services of the other components if appropri-
ate. For example, the touch/sensor component makes use of
the network component to send its data to destination appli-
cations. In addition to that, we implemented a subcomponent
for streaming of video portals which also makes use of the
services of the main components. For example, the network
component is used to transfer stream packets to other devices.
The following sections provide a description of each compo-
nent.

Mediator Component
An essential requirement to realize distributed MDE appli-
cations is to detect corresponding application instances and
its associated details for network connectivity within MDEs
where application instances appear or vanish in an ad-hoc

Figure 8. Supported network scenarios.

manner. The mediator component is responsible for those
tasks and addresses the challenge (3) by providing a list
of currently available application instances. This list cov-
ers application instances for the following two scenarios as
sketched in Figure 8: (1) the devices are in the same network
and are able to contact each other directly; (2) a device is
located in a different network and is not directly accessible.
One example for the latter case is when mobile devices are
connected to a wireless private network provided by a NAT6

router whilst the corresponding large static display is con-
nected to a different network provided by a LAN. Such sce-
narios often occur in research labs where multiple wireless
private networks for dedicated projects or applications coex-
ist.

Devices in the same Network
The mediator component in each application instance em-
ploys broadcast messages to maintain a list of all available
application instances within the same network. Broadcast
messages are received by every device on the same network.
Therefore, they suit well to exchange application instance IDs
with each other. An application instance ID contains the de-
vice ID, the project / application name and connectivity de-
tails. Upon start of the mediator instance, a greet ID message
is broadcasted to the network to tell other instances about the
existence and availability of the application. Every mediator
instance that receives a greet message broadcasts its own ID
message to inform the availability of itself, thus update the
alive status to other mediator instances. On exit of the media-
tor instance, a bye ID message is broadcasted to the network
in order to tell other mediator instances about the absence of
itself.

Devices in different Networks
In order to support environments where an MDE is com-
prised of multiple private networks which have no direct route
to each other but have routing to external addresses through
NAT, the mediator component builds on a mediator server in-
stance which all devices have access to. This setup is optional
and only required for connections across different networks.
Mediator instances of applications can register at a mediator

6Network Address Translation



server instance which maintains a list of registered applica-
tion instances with their according application ID. This list
is retrieved by the application’s mediator instance and aug-
ments the list of available application instances with those
not directly available. Furthermore, the mediator server in-
stance helps application instances connect each other across
different networks by means of the mechanisms STUNT7 for
TCP and STUN8 for UDP.

Network Component
The network component is responsible for establishing con-
nections to other devices and transferring messages and files
or data buffers between devices. It is designed to support in-
teractive systems through selectively distributing the data to
be sent to appropriate transport channels. The most important
requirement of responsive interactive applications is that the
communication of custom application logic with other appli-
cation instances (e.g. status updates, commands or requests)
must not be delayed as best as possible. Furthermore, real-
time data such as touch events or video stream packets have to
be transferred as fast as possible without affecting the appli-
cation logic’s communication. Therefore, the network com-
ponent operate with different transport channels as described
in the following section. In preparation for establishing con-
nections, the network component interacts with the mediator
component to retrieve connection details for the mediator sce-
nario (1) or to employ the mediator server instance’s service
to initiate STUNT/STUN channels in case of the mediator
scenario (2).

Connections between Devices
Upon successful connection with a device, the network com-
ponent has established the following channels: (1) TCP main
channel; (2) TCP bulk data channel; (3) UDP interactive
channel. The first channel (1) serves as communication chan-
nel for custom application logic as well as framework com-
munication with other framework instances, for example to
start/stop a video portal or handshake options for the video
portal. The transfer of large files or data buffers potentially
takes more time and would induce lag and wait times on
communication of the application logic if conducted over the
main channel. Therefore, such transfers are handled over the
bulk data channel (2) to ensure responsiveness of the inter-
active application. The UDP data channel (3) is used for
touch events and sensor data due to the timely constraints of
such kind of data regarding interactivity. For example, users
would not notice missing intermediate touch events during a
touch gesture or missing intermediate compass values when
rotating a tablet. However, they severely notice the lag in
visualization of the effect of such events. For example, if
touch events are delayed due to retransmissions of past touch
events, then their happening as well as the according visual-
ization occurs timely disrupted on the destination.

In addition to the three channels, a fourth portal channel is
established on demand for a video portal. Applications can
choose which transport protocol (TCP/UDP) the portal chan-
nel shall use. This additional channel is required because of
7RFC5382 http://tools.ietf.org/search/rfc5382
8RFC5392 http://tools.ietf.org/search/rfc5389

the real-time character and amount of data of video portals
where the receiver is typically flooded with stream packets.
Therefore, those data would disturb and negatively affect the
other channels.

Handshake
Upon successful connection of the main channel (1), the de-
vices exchange their capabilities, such as device type (tablet,
smartphone, tabletop, display, etc.), screen dimensions in pix-
els, display density in dpi, support for video formats, avail-
ability of sensors, or socket buffer sizes. Those capabilities
are autonomously detected by the framework and used to op-
timize the transport channels or to automatically derive pa-
rameters. For instance, if the custom application logic has
not specified the size of the video portal on a tabletop, then
the video portal’s size is calculated to match the area that the
device covers on the tabletop surface by means of pixel and
dpi values.

Touch/Sensor Component
The touch/sensor component is responsible for putting
through received events to the platform specific layer as fast
as possible where the events are further handled depending
on the particular platform. For instance, on tabletop systems,
touch events are injected into the touch system and thereby
appear as regular touch events. The second responsibility
of the this component is to keep the event states consistent,
that is to compensate for missing events due to packet drops
or to drop old events that were outrun by newer events. For
this purpose, each exchanged event carries an incremental se-
quence number and the current touch/sensor state is trans-
mitted once every second. Both help the component detect
missing or outdated packets. This mechanism is the same as
employed in the TUIO protocol9.

Furthermore, this component supports gesture recognizer
plug-ins which are feed with the current event states on each
change of the event states. If the plug-in has recognized a
gesture, then a plug-in defined gesture string is put through
to the platform specific layer which may consume the gesture
event or pass it on to the custom application logic. Based on
this infrastructure, we have implemented a recognizer plug-in
that enables three finger touch gestures for scaling the video
portal’s size (pinch gesture) or moving the video portal’s po-
sition (pan gesture) on the tabletop surface.

Smart Portal
In order to enable video portals, we have implemented a sub-
component called Smart Portal which was designed to pro-
vide a high quality, high resolution video stream optimized
for low latency. Smart Portal replicates part of a source win-
dow, such as the application visualization of an interactive
tabletop, to the application window of a mobile device. The
framework automatically renders the video stream to the win-
dow background of an application window specified by the
user application. Thereby, developers can build portal appli-
cations as regular applications taking advantage of operating
system widgets without the inclusion of additional external

9http://www.tuio.org/



stand-alone applications. The following design elements of
the subcomponent are decisive contributions to achieve low
latency and high resolution portals:

1. Video compression is used to minimize latency induced by
network transport. Smart Portal employs the high effi-
ciency video codec H.264 enabled through the opensource
implementation libx26410 based on the encoding profile
”superfast/zerolatency”.

This library was natively compiled for all platforms and
used for encoding and decoding. However, software de-
coding is only used as a fall-back case. The framework on
mobile devices makes use of hardware decoding if avail-
able, which unburdens the CPU from video decoding while
application and framework logic fully benefits from the
CPU.

2. GPU acceleration: Virtually all nowadays graphic cards
support scientific computation by means of the standard-
ized OpenCL11 API. For this reason, computational inten-
sive preprocessings of the video stream’s source images are
performed on the GPU for which we developed optimized
OpenCL kernels.

Real-time GPU Pipeline
Creation of the source portal stream includes several image
processing steps such as comparison of subsequent frames,
rotation by a given angle, bilinear scaling, and image format
conversion from RGB to YUV. Comparison of subsequent
frames is highly recommended and help reduce the system
load by skipping all remaining filters in case of equality. Bi-
linear scaling is required since Smart Portal supports arbi-
trary portal source sizes which need to be scaled to the de-
sired video stream resolution. Rotation by a given angle is a
requirement for tabletop surfaces since mobile devices may
be placed arbitrarily oriented on the tabletop. Finally, format
conversion is a requirement for the H.264 encoding process.

All of the image processing tasks are moved from CPU to
GPU because of two reasons. First, most of the time modern
GPUs have only little workload caused by rendering the ap-
plication user interface. Second, modern GPUs have multiple
computing units where each unit can run a multitude of work
items (>= 256) in parallel and extremely fast, thus process
much more pixels of an image in parallel and much faster than
the CPU.

Thereby, disburden the CPU results in preserved computing
resources for the benefit of application and framework logic
which further reduce system latency.

Scalability
In particular, this solution scales much better with increas-
ing number of portals computed in parallel because of the
available GPU computing units, where the GPU exploit the
available units in parallel. In contrast, workload of the CPU
increases with each additional portal resulting in potentially
added latency or drop of frames.

10http://www.videolan.org/developers/x264.html (Apr. ’14)
11http://www.khronos.org/opencl (Apr. ’14)

Figure 9. Latency measure of a portal that covers the tablet’s physical
size on the surface.

Figure 10. Latency measure of a high resolution portal source.

Latency
We roughly measured the latencies of our portal approach by
means of a simple technique wherein we superimposed the
portal’s source with a number that increased with every frame
at 30 fps. This number is then photographed in the way that
the portal’s source and the portal’s destination are on the same
picture, see Figure 9. Based on the difference of the num-
bers and the frame rate of 30 fps, we determined the latencies
shown in Table 1 for a Microsoft PixelSense 2.0 device and a
Samsung Galaxy Tab 2.

Table 1. Latencies at 30 frames per second (±16ms).
Video stream size Min. (ms) Median (ms) Max. (ms)

294 x 454 66.6 99.9 133.2
844 x 1080 99.9 133.2 166.5

Table 1 lists latencies of a TCP portal for two video stream
resolutions, i.e. 294x454 (pixels of the surface covered by the
tablet’s physical size, see Figure 9) and 844x1080 (full height
of the surface tabletop, see Figure 10). For each row in the
table, we took at least 30 pictures in sequence and determined
the median, the lowest, and the highest latency. The average
latencies are between 100ms and 133ms which we consider



low for such a complex MDE system. The difference be-
tween the video stream sizes are 33.3ms on average, which
gives a strong indication that the main part of the latency was
induced by network transport. Smaller video stream resolu-
tions yield fewer video data to be transmitted which in turn
can be displayed earlier on the portal destination. Therefore,
the results revealed possibilities for further latency improve-
ments through network optimizations.

FUTURE WORK
Environs is currently used to build MDE applications employ-
ing video portals in order to conduct research on appropriate
interaction techniques and user interfaces. The further devel-
opment of the framework includes distributing Environs12 to
fellow researchers and get feedback on the framework’s con-
cepts and functionality. We hope that our framework will help
advance and conduct research for portal interaction within
MDEs.

The code distribution of Environs allows for easy extension
for further platforms, such as Linux, Apple MacOS, or Mi-
crosoft Windows Phone. Hence, we plan to add platform spe-
cific API layers for those platforms on demand.

CONCLUSION
Developing interactive video portal MDE applications re-
quires engineering of essential functionality, such as device
and environment management, reliable and responsive net-
work communication, or enabling video portals. Consider-
ing nowadays heterogeneous device platforms, implementing
those functionality for each platform can be elaborate and er-
ror prone. This paper addresses these issues by means of a
multi-platform software framework that helps developers and
designers focus on application and presentation logic. Engi-
neering a framework for the targeted MDE application do-
main is quite challenging and rise questions in terms of archi-
tecture and design.

We have presented the Environs framework as an approach to
tackle the engineering issues and described details which an-
swer questions that arise within the engineering process. The
framework’s code distribution reduces the resources required
to develop and maintain the framework while allowing the
framework to exploit platform specific optimizations or adap-
tations. Our approach shows how to cope with multiple coex-
isting applications within the same physical MDE through the
concept of application environments, how to realize high res-
olution video portals, or how to subdivide framework func-
tionalities to components in order to enable interactive and
responsive applications.

While this paper emphasized on MDEs with tabletop sur-
faces, the presented example applications demonstrate the
general use of Environs also for other kinds of devices, such
as large public displays. The examples also proved the use-
fulness of Environs and the concepts behind.
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